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Analysis 1 - MIDTERM Exam - Semester I

1. Let f:[1,00) = [0,00) be any continuous decreasing function. Then show that

Zf(j)is summable < /f(u)du < oo0.
! 1

Solution: We will show

n=1

/ fayde <3 f(n) < F(1) + / f(z) da (1)

Note that showing (1) is enough for the solution. Since f is a monotone decreasing function,
f(x) < f(n),Vz € [n,00) and f(n) < f(x),Vx € [1,n]. Hence for every integre n > 1,

n+1 n+1

[ f@dr< [ smyde = o) (2)

and, for every integer n > 2,

n n

fo= [ smds< [ fayis. (3)

n—1 n—1
By summation over all n from 1 to some larger integer M, we get from (2)

M+1

[ f@dr <3 o)

—

and from (3) ;
M
3 f(n) < £(1) +/f(a:) da.
n=1 1

Combining these two estimates yields

M+1 Y M
[ t@de< Y ) < s+ [ f)a
1 n=1 1
Letting M tend to infinity, the bounds in (1) follows. O



o0 [ee]
. Let aj, as,... be any sequence of complex numbers. If Y |a,| is summable, then Y a,, is summable.
1 1

2]
m m
Solution: Let n and m be any two positive integers such that n < m then | )" a;| < > ‘aj’.
j=n j=n
o0 o0
Thus Y a; is cauchy whenever Y |a;| is so. O
j=1 j=1
. Let {x1,z2,...} be a sequence of nonzero complex numbers. Assume that
lim sup Tntl) _ L<1
n—o00 Tn
o0
Then _ |z,| < o0 [3]
1
Solution: Theorem 3.34 in Principles of Mathematical Analysis by Walter Rudin ]

. The series Y apb, is summable if A, = a; +as+ ...+ a, is a bounded sequence and the sequence
1

b, decreases to 0. [4]

Solution: Theorem 3.42 in Principles of Mathematical Analysis by Walter Rudin ]

. Let w1, ws, ws be the roots of 3 —1 = 0. Define a,, = ws if n is divisible 3, a, = ws if n =2 mod 3

and a, = wy if n =1 mod 3. Show that } - #55; is summable. 3]
1

Solution: We will apply the result in Question 4. Note that w; + we + w3 = 0, therefore, {a,}
satisfies the hypothesis of Question 4. Also monotonic decreasing property in Question 4 is satisfied

by b, = m. Hence the given series is convergent. O

. Let a1, a2,as, ... be a real sequence bounded below. Let a = liminfa;. Then for each § > 0, show
j—o0

that there exists kg such that a, > o — 0 for all & > k. [1]

Solution:  Note that « is the infimum of all the subsequential limits of the sequence {ay,}.
Therefore no subsequence can converge to a number less than . Hence for any § > 0 there exists
a ko € N such that ax > o — 0, Vk > k. O

Discuss the summability of the following examples

o0
.2 PP p>0 3]
n=1
n+1
Solution: Apply ratio test. We get lim sup 1"%7’;;1“’ = p. So the series converges for 0 < p < 1.
n—oo
If p > 1 then the series can’t converge as the n—th term doesnt tend to zero. O



o0

1
8. 120% nlog n(loglogn)p p> 0 [3]

Solution: We will use the result in Question 1. Case 1: p = 1.

oo
%log loglogz = Therefore, of = logloglog z|$§, = oco. Hence the

1 _ dz
z log z(log log x) * 100 z log z(log log x)
given series diverges in this case.

Case 2: 0 <p<1.

Hence by using Case I and comparison test we get

1 1
Here we have nlog n(loglogn)P > nlogn(loglogn) "
the series diverges in this case also.
Case 3: p > 1.

Let p =1+ €. We have —

d 1 _ 1
dz e(loglogz)¢ — zlogz(loglogax)ite:

oo
1 _ 1 00 : :
Hence 140 TTogz(log og ) TF¢ = ~ e(loglog 2)° 559 < oo and the series converges by Question 1.
g
[3]

S - L)

120% Vn—1 Vn
Solution: Case 1: p < 0.
Taking a,, = \/nlfl — ﬁ and b, = n? in the result of Question 4 shows that the series converges.

Case 2: p>0.

np(m ﬁ) \/71171 - ﬁ We will show that \/171 - ﬁ > L for large n. This is same
as showing \/n(,/-%5 — 1) > 1 for large n. By squaring both sides this is equivalent to showing
n(2n —1—2n,/3= i/n +2,/ 1_1/71) > 1 whiich easily seen to be true for all large n. O



