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Analysis I - MIDTERM Exam - Semester I

1. Let f : [1,∞)→ [0,∞) be any continuous decreasing function. Then show that

∞∑
1

f(j)is summable⇔
∞∫
1

f(u)du <∞.

[3]

Solution: We will show

∞∫
1

f(x) dx ≤
∞∑
n=1

f(n) ≤ f(1) +

∞∫
1

f(x) dx (1)

Note that showing (1) is enough for the solution. Since f is a monotone decreasing function,
f(x) ≤ f(n),∀x ∈ [n,∞) and f(n) ≤ f(x),∀x ∈ [1, n]. Hence for every integre n ≥ 1,

n+1∫
n

f(x) dx ≤
n+1∫
n

f(n) dx = f(n) (2)

and, for every integer n ≥ 2,

f(n) =

n∫
n−1

f(n) dx ≤
n∫

n−1

f(x)dx. (3)

By summation over all n from 1 to some larger integer M , we get from (2)

M+1∫
1

f(x) dx ≤
M∑
n=1

f(n)

and from (3)
M∑
n=1

f(n) ≤ f(1) +

M∫
1

f(x) dx.

Combining these two estimates yields

M+1∫
1

f(x) dx ≤
M∑
n=1

f(n) ≤ f(1) +

M∫
1

f(x) dx.

Letting M tend to infinity, the bounds in (1) follows. �
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2. Let a1, a2, . . . be any sequence of complex numbers. If
∞∑
1
|an| is summable, then

∞∑
1
an is summable.

[2]

Solution: Let n and m be any two positive integers such that n ≤ m then

∣∣∣∣∣ m∑j=n aj
∣∣∣∣∣ ≤ m∑

j=n

∣∣aj∣∣.
Thus

∞∑
j=1

aj is cauchy whenever
∞∑
j=1

∣∣aj∣∣ is so. �

3. Let {x1, x2, . . .} be a sequence of nonzero complex numbers. Assume that

lim sup
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = L < 1

Then
∞∑
1
|xn| <∞ [3]

Solution: Theorem 3.34 in Principles of Mathematical Analysis by Walter Rudin �

4. The series
∞∑
1
anbn is summable if An = a1 + a2 + . . .+ an is a bounded sequence and the sequence

bn decreases to 0. [4]

Solution: Theorem 3.42 in Principles of Mathematical Analysis by Walter Rudin �

5. Let w1, w2, w3 be the roots of x3−1 = 0. Define an = w3 if n is divisible 3, an = w2 if n ≡ 2 mod 3

and an = w1 if n ≡ 1 mod 3. Show that
∞∑
1

an
log(n+100) is summable. [3]

Solution: We will apply the result in Question 4. Note that ω1 + ω2 + ω3 = 0, therefore, {an}
satisfies the hypothesis of Question 4. Also monotonic decreasing property in Question 4 is satisfied
by bn = 1

log(n+100) . Hence the given series is convergent. �

6. Let a1, a2, a3, . . . be a real sequence bounded below. Let α = lim inf
j→∞

aj . Then for each δ > 0, show

that there exists k0 such that ak ≥ α− δ for all k ≥ k0. [1]

Solution: Note that α is the infimum of all the subsequential limits of the sequence {an}.
Therefore no subsequence can converge to a number less than α. Hence for any δ > 0 there exists
a k0 ∈ N such that ak > α− δ, ∀k ≥ k0. �

Discuss the summability of the following examples

7.
∞∑
n=1

pnnp p > 0 [3]

Solution: Apply ratio test. We get lim sup
n→∞

pn+1(n+1)p

pnnp = p. So the series converges for 0 < p < 1.

If p ≥ 1 then the series can’t converge as the n−th term doesnt tend to zero. �
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8.
∞∑
100

1
n logn(log logn)p p > 0 [3]

Solution: We will use the result in Question 1. Case 1: p = 1.

d
dx log log log x = 1

x log x(log log x) . Therefore,
∞∫

100

dx
x log x(log log x) = log log log x|∞100 = ∞. Hence the

given series diverges in this case.

Case 2: 0 < p < 1.

Here we have 1
n logn(log logn)p >

1
n logn(log logn) . Hence by using Case 1 and comparison test we get

the series diverges in this case also.

Case 3: p > 1.

Let p = 1 + ε. We have − d
dx

1
ε(log log x)ε = 1

x log x(log log x)1+ε .

Hence
∞∫

100

1
x log x(log log x)1+ε = − 1

ε(log log x)ε |
∞
100 <∞ and the series converges by Question 1.

�

9.
∞∑
100

np( 1√
n−1 −

1√
n

) [3]

Solution: Case 1: p < 0.

Taking an = 1√
n−1 −

1√
n

and bn = np in the result of Question 4 shows that the series converges.

Case 2: p ≥ 0.

np( 1√
n−1 −

1√
n

) ≥ 1√
n−1 −

1√
n

. We will show that 1√
n−1 −

1√
n
≥ 1

n for large n. This is same

as showing
√
n(
√

n
n−1 − 1) ≥ 1 for large n. By squaring both sides this is equivalent to showing

n(2n− 1− 2n
√

1
1−1/n + 2

√
1

1−1/n ) ≥ 1 whiich easily seen to be true for all large n. �
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